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Abstract
A multifractal analysis has been proposed to investigate complex systems,
which exhibit a nonuniform local structure. Multifractal measures are
normalized mass distributions inhomogeneous at every scale. To every point
P is associated the exponent α of the power law rα describing the asymptotic
behaviour as r → 0 of the mass of a sphere of radius r and centre P . The
measure properties are specified by the dimension spectrum f (α) of the set
of points P with the same scaling exponent α. This spectrum is nontrivial
even when the mass distribution has no holes (measure with Euclidean support)
and the box counting dimension is an integer. In this case it can be evaluated
by considering a sequence of uniform grids, whose spacing decreases as 2−n,
known as uniform partitions. We consider here a family of iterated function
system fractal measures with support on the unit square with random defects
specified by three parameters: a scale ε, a probability p and an attenuation
factor η. Given a partition with a diameter less than ε any cell is chosen
with probability p and its mass is multiplied by η: the corresponding pre-
measure is obtained after normalization. In all the examples examined the
f (α) spectrum appears to widen monotonically as η decreases. This result
suggests the possibility of using the method to detect the presence of defects
in sponge-like structures, such as cancellous bone (sponge-like), by analysing
their radiographs since the grey intensity is related to the mass density of the
structure. A widening of the f (α) spectrum is indeed observed in osteoporotic
bone radiographs compared to normal bone radiographs. This may be attributed
to the rarefaction of the cancellous bone.

PACS numbers: 05.45.Df, 87.59.-e, 87.58.Xs
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0305-4470/02/081871+14$30.00 © 2002 IOP Publishing Ltd Printed in the UK 1871

http://stacks.iop.org/ja/35/1871


1872 R Santoro et al

1. Introduction

The local properties of fractal measures are specified by the scaling exponents of spheres
and the uniform partitions provide an algorithm to evaluate the spectrum of exponents [1–5].
Convergence of the algorithm to the generalized dimensionsD(q) has been proved for positive
values of q, the result being the same as for dynamic partitions [6, 7]. An optimal complexity
algorithm was developed to compute the uniform partitions in [8]. The numerical convergence
of the algorithm for positive values of q was confirmed and evidence was given for convergence,
when q is negative, only for measures whose support is the unit square or whose uniform
partitions are a subset of the dynamic partitions. For any other measure with fractal support the
convergence is very poor for q < 0; the possible limit valuesD∗(q) differ from the dimensions
D(q) obtained with dynamic partitions [8]. A modified algorithm, based on extended boxes,
has been proposed to overcome the difficulties with q < 0 for the measures with fractal
support [9]. Another approach, based on wavelet transforms, has also been considered [10].
Since we deal with digitized images, we assume the underlying measure has a Euclidean support
(the unit square) and we used the algorithm [8] having an optimal computational complexity.
The partition function Z(n)(q) for a lattice of side 2−n is determined recursively and for a
measure defined by an array of 2N × 2N pixels the computational complexity is proportional
to 22N+2. The values of log2 Z

(n)(q) are close to a straight line (discarding the lowest n). The
slope is determined by the least square fit method. The fractal measures we have considered to
test the method are the iterated functions systems (IFS), for which the dimension spectrum is
known analytically [11]. Rather than the dimensions spectrumD(q)we examine the spectrum
f (α), defined by the Legendre transform of the concave function τ(q) = (q − 1)D(q). The
function f (α) is the Hausdorff dimension of the set of points, for which the scaling exponent
of the measure is α, and describes the spread of scaling exponents through the support of the
measure.

Having in mind some biomedical applications we have analysed the variation of the
spectrum caused by the introduction of random defects in the fractal measures [12]. These
defects are characterized by a scale ε (the diameter of the defect), by a probability p of the
defect to appear and by an attenuation factor η ranging from 0 (lacunes) to 1 (no defect). The
defects are meant to simulate the effect of osteoporosis in a cancellous (sponge-like) bone [13],
whose radiographic image is assumed to correspond to a fractal measure. The scale and the
probability are varied to simulate different stages of the pathological degeneration. The key
issue is to detect, in this mathematical model, the sensitivity of the spectrum of local exponents
to the size and the probability of defects, namely to the degree of the pathological state.

Osteoporosis is a pathology which causes a rarefaction of the trabecular structure of the
bone. The definition of a model correctly describing this effect is a very hard task. First
of all one should describe the 3D structure of the cancellous bone, which is like a porous
material, and of the organic material filling the pores, specifying what kind of changes occur
in the osteoporotic state. A model based on 3D fractal measures should be compared with 3D
tomographic images of the bone. The 3D reconstructions are not considered in routine clinical
tests. In contrast, the 2D fractal measures can be compared with ordinary x-radiographs. The
3D program is beyond the scope of the analysis we present here.

Keeping in mind that the 3D approach to the problem should be considered in the future,
we have analysed the ordinary x-radiographs. They provide a projection on a plane of the
solid structure of the cancellous bone and of the soft material filling it. The 2D fractal measure
with defects we propose should describe the basic structure of these radiographs concerning
the changes induced by osteoporosis. As a mathematical model we consider an IFS measure
where the defects are introduced by reducing, according to the attenuation factor η, the pre-
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measure of the elements of the dynamic partitions of diameter less than ε, chosen according to
a probability p. A normalization procedure is applied at any step of the generating process to
obtain the sequence of pre-measures, whose limit is the IFS measure with defects. The defects
we consider are not lacunae (unless η = 0) but only a random attenuation of the measure,
occurring below a given scale and with an assigned probability. As a consequence we believe
that the problems encountered by the uniform partition algorithms in the case of measures with
fractal support are avoided.

This is certainly true for low attenuation namely for η close to 1 or for both η and p small.
For η = 0 the measure becomes lacunar and has a fractal support. When η approaches zero
the proposed algorithm should still converge to the right measure, however, in the absence of
estimates on the convergence speed, we cannot exclude that, for negative values of q, it slows
down very rapidly with η when η → 0. In this case the numerical results obtained at a finite
order are no longer reliable, unless the probability p of the defect with low η is very small,
as in the chosen examples. In future work we plan to investigate the η → 0 limit using the
algorithms proposed in [9, 10], which are claimed to be convergent for q < 0 also in the case
of measures with a fractal support.

Since the direct quantitative comparison of the spectra is not practical we have examined
the first moments. To this end the whole spectrum must be known and in our case an
extrapolation to reach the end points α±, where f (α) vanishes and has a vertical tangent
f ′(α) = q = ±∞, is needed. The occurrence of negative dimensions allowing f (α) to
vanish before the end-points α± appears to be extremely unlikely even for η very close to zero.
The interpolation is made with cubic splines plus two arcs of the algebraic curve to allow for
vertical tangents at the ends of the interval where the spectrum is defined.

We have applied the proposed method to analyse a sample of normal and osteoporotic
bone radiographs. The widening of f (α) spectrum observed in the case of the osteoporotic
bone radiographs is similar to the change occurring in the IFS measures when the defects are
introduced and can be attributed to the rarefaction of the bone trabecular structure.

2. Uniform partitions

We consider a systemM = (M1, . . . ,Ms) of linear maps with statistical weights (p1, . . . , ps).
Letting

Mi(x) = λiR(αi)x + bi 0 < λi < 1 x ∈ I = [0, 1]d (2.1)

where R denotes an orthogonal matrix, we assume that the images Ij = Mj(I) of the unit
cube are disjoint. The iterationsMn(A0) converge for any A0 ⊆ I to a fractal attractor A. We
define the partitions I(n) of the cube by the recurrence I(n) = M(I(n−1)) where I(0) = I and
the partitions of A by A(n) = I(n) ∩ A. Any partition is the union of sn disjoint sets

I(n) =
⋃

kn,...,k1

Ikn,...,k1 Ikn,...,k1 = Mkn · · ·Mk1(I )

A(n) =
⋃

kn,...,k1

Akn,...,k1 Akn,...,k1 = Ikn,...,k1 ∩ A. (2.2)

A sequence µ(n) can be defined by assigning the value it takes on the sets Ikn,...,k1

µ(n)(Ikn,...,k1) = pk1 · · ·pkn (2.3)

where p1 + · · · + ps = 1. We define a pre-measure µ on A by assigning the value it takes on
the sets Akn,...,k1 according to µ(Akn,...,k1) = µ(n)(Ikn,...,k1). The invariance of the measure with
respect to M follows from the definition (2.3) and reads µ(M(A)) = µ(A). The dimensions
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spectra are introduced in the framework of the thermodynamic formalism as well. The free
energy for the dynamic partitions of an IFS is defined by

F
D
(q, τ ) = lim

n→∞
1

n
log

∑
kn,...,k1

(pk1 · · ·pkn)q
(λk1 · · · λkn)τ

= log
s∑

j=1

p
q

j λ
−τ
j (2.4)

where λk1 . . . λkn = δ(Akn...k1) is the diameter of the set Ak1...kn . The dynamic free energy
F

D
vanishes at the scaling exponents τ(q) of the correlation integrals. The spectrum of

generalized dimensions is defined by Dq = τ(q)/(q − 1). Moreover D0 = −τ(0) is the
Hausdorff dimension. Indeed the Hausdorff measure is defined on coverings Bε with sets Bi
of diameter εi � ε according to

H(ε, β) = inf
Bε

∑
i

ε
β

i (2.5)

and the limit for ε → 0 defines a function H(β) which diverges for β < D
H

and vanishes for
β > D

H
where D

H
is the Hausdorff dimension. The dynamic partition A(n) is the covering

belonging to Bε with ε = λn (where λ is the largest of the scales λi), for which the minimum
is achieved. As a consequence the Hausdorff dimension satisfies λDH

1 + · · · + λDH
s = 1 which

implies F
D
(0,−D

H
) = 0.

The uniform partitions U (n) correspond to a tessellation of the unit cube into cubelets of
side 2−n. Replacing in the definition of the free energy the elements Akn,...,k1 of the dynamic
partitions with the cubelets c(n)i for 1 � i � 2nd and taking the base 2 logarithm we obtain the
free energy F

U
which reads

FU = τ + lim
n→∞

1

n
log2

2nd∑
i=1

µq(A ∩ c(n)i ). (2.6)

The exponents τ
U
(q) for the uniform partitions are defined by F

U
= 0 and read

τU (q) = − lim
n→∞

1

n
log2

2nd∑
i=1

µq(A ∩ c(n)i ). (2.7)

We shall consider the Legendre transform of τ(q)which enhances the deviations of τ(q) from
a linear behaviour. Since τ(q) is concave d2τ/dq2 < 0 its Legendre transform

f (α) = min
q
(qα − τ(q)) −→ α = dτ

dq
(2.8)

exists and is also concave. The following properties are an immediate consequence of the
definition:

max f (α) = D0 ≡ D
H

f (α) = α for α = D1. (2.9)

The interval q < 1 is mapped into [α1, α−∞], the interval q � 1 into [α+∞, α1] where α1 = D1

and f ′(α1) = 1. Since q = df/dα the tangent is vertical at α±∞ and the maximum of f (α)
is at α0 > α1 where f (α0) = D

H
.

3. Multifractal measures

We have considered fractal measures on the unit square discretized by a 2N × 2N matrix,
where the integer entries gi are the grey tones, ranging in the interval [0, Ngr ]. The discretized
measure on the unit square corresponds to the partition of order N .

The grey tone gi is defined as the closest integer to Ngr µ(A ∩ c(N)i ). The exact measure

of any cell µ(A ∩ c(N)i ) is replaced with gi/G, where G = ∑22n

i=1 gi is very close to Ngr .
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Measure I Measure II Measure III

Figure 1. Measure I with support on the unit square, defined by the maps (3.2) with weights
p1 = 0.225, p2 = 0.275, p3 = 0.265, p4 = 0.235 (left-hand side). Measure II with fractal
support and dynamic partitions a subset of uniform partitions, defined by the maps (3.2) with
weights p1 = 0.275, p2 = 0.350, p3 = 0.000, p4 = 0.375 (centre). Measure III with a generic
fractal support defined by the maps (3.3) with weights p1 = 0.25, p2 = 0.35, p3 = 0.40 (right-
hand side).

For any lower-order partition U (n−1) with n � N we replace the measure µ(c(n−1)
i ) with

g
(n−1)
i /G where g(n−1)

i is computed by summing the grey tones gi ′ of the four cells c(n)i ′ whose
union is c(n−1)

i . By iterating the process, the grey tones for all the partitions from order n to
order 0 is obtained. For the chosen value of n we consider the sequence

τn(q) = −1

n
log2

22n∑
i=1

(
g
(n)
i

G

)q
0 � n � N. (3.1)

The exact spectrum τ(q) is given by the limit of τn(q) as n → ∞. Three distinct classes were
considered and shown in figure 1.

(I) Measures with support on the unit square. An example is the measure generated by the
following maps suitably weighted

M1 =
( 1

2x
1
2y

)
M2 =

( 1
2x + 1

2
1
2y

)
M3 =

( 1
2x

1
2y + 1

2

)
M4 =

( 1
2x + 1

2
1
2y + 1

2

)
.

(3.2)

In this example the dynamic partitions are the uniform partitions, even though this is
non-required.

(II) Measures with fractal support, whose dynamic partitions are a subset of uniform partitions.
An example is obtained by setting to zero one of the weights of the maps (3.2).

(III) Measures with fractal support, with dynamic partitions which are not a subset of uniform
partitions, such as those associated with the Sierpinski set

M1 =
( 1

2x
1
2y

)
M2 =

( 1
2x + 1

2
1
2y

)
M3 =

( 1
2x + 1

4
1
2y +

√
3

4

)
. (3.3)

The f (α) spectra obtained from uniform and dynamic partitions are the same only if a
measure has an Euclidean support (I), or a fractal support but its dynamic partitions are a
subset of uniform partitions (II) [8]. Using suitable algorithms, based on integer arithmetics,
the value of τ(q) is determined by a least square fit with respect to n of nτn(q) defined by (3.1).

The numerical analysis, carried out using a 29 × 29 grid on the unit square and Ngr = 28

grey tones, has shown that, for the measures of classes I and II the value of τ(q) given by the
least square fit agrees with the exact value for any q (a typical accuracy is 10−3), whereas for
the generic fractal measures of class III the agreement for q < 1 is lost [8], see the right-hand
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f(
α)

α1.8 2.2
0

2.2

2

Measure I

f(
α)

α1.3 2
0

1.7

1.58

Measure II

f(
α)

α1.2 2.2
0

1.7

1.58

Measure III

Figure 2. Local spectrum of exponents f (α) computed from uniform partitions (small circles)
compared with the analytical result for the measures I, II, III shown in figure 1.

side of figure 2. The convention used for the reference frame in figure 1 is the standard one
used in computer graphics:

x

y

4. Measures with defects

We have considered another set of measures obtained by introducing defects in the generation
process of the ordinary fractal measures. A way of generating the fractal measure consists in
iterating the maps on an initial set I ⊂ [0, 1]2, whose images Ik = Mk(I) are disjoint.

At step n this cascade process generates the sets Ikn,...,k1 whose weight is pk1 . . . pkn . In
view of radiological applications we consider measures with defects, specified by a scale ε, a
probability p and an attenuation factor η. The defect, which affects the dynamic partitions,
whose diameter is less than ε, is introduced by choosing with probability p any element of
the partition and by reducing the corresponding weight by a factor η. At any step the new
pre-measure is defined after normalization. The way of generating a measure with defects is
illustrated in figure 3 for a ternary Cantor set with weights p1 = 2/3, p2 = 1/3 where the
defect parameters are ε = p = η = 1/2. We compute the τ(q) spectrum on the limit measure
(not on the sequence of pre-measures). The results concerning the properties of the measures
are given in probability. As an example we consider the maps (3.2) with equal weights and
η = 0 which produces a lacunar measure. The probability of getting an empty set is [3]

Pempty = t t least positive solution of t = ((1 − p)(t − 1) + 1)4. (4.1)

When p > 3/4 we have Pempty = 1. For a smaller defect probability a non-empty set is
generated with probability 1 − t and the expectation value of Hausdorff dimension of the
support of the lacunar measure for p < 3/4 is

E(DH ) = log(4(1 − p))

log 2
. (4.2)

Cutoff. We have analysed several fractal measures with defects corresponding to the classes
defined in section 3. It was found that nτn(q) follows a fairly linear law in n for q > 0, whereas
for q < 0 a linear behaviour is found provided that one excludes all the scales above ε, which
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Original Cantor set
Cantor set with 
attenuation

Cantor set with
attenuation and
normalization

Schematization of the
generating process for 
the Cantor set

M0 M1M1

M1

M0

M0

( 0, 1)

( 0, 1/9) (2/9, 1/3) ( 2/3, 7/9) ( 8/9, 1)

( 0, 1/3) ( 2/3, 1)

Figure 3. Generation of defects for the measure on a Cantor set.

q= -40 q= -30 q= -20 q= -10

q= 0 q= 10 q= 20 q= 30

No cutoff
q= -40 q= -30 q= -20 q= -10

q= 0 q= 10 q= 20 q= 30

Cutoff

Figure 4. Graph of log2
∑
(g
(n)
i )q = (N − n)τn(q) + q log2 G − NτN(q) versus N − n and

corresponding least square fitting line for the fractal measure defined by (3.2) with weights
p1 = 0.225, p2 = 0.265, p3 = 0.235, p4 = 0.275 and defect appearing at the scale λ = 2−6 with
probability p = 0.1. All the figures of the left group refer to all the scales whereas the figures of
the right group are obtained by discarding the scales smaller than ε.

is the scale at which the defect appears. In figure 4 the behaviour of log2

∑
(g
(n)
i )q in the range

−40 � q � 30 is shown: we compare, by drawing the least squares fitting line, the case where
all the scales are retained and the case where a cutoff is introduced by discarding the scales
smaller than ε (corresponding to n � nε if ε = 2−nε ). In figure 5 the effect of the cutoff on
f (α) for a measure with defects is shown.

We recall that in the absence of defects the numerical τ(q) spectrum is accurate for any
q, if the measure belongs to classes I or II. The presence of defects changes the local nature of
the measure as shown by the spectrum of exponents. The application of the cutoff drastically
changes the τ(q) spectrum for q < 0 and consequently the right part of the f (α) spectrum after
its maximum. The spectrum τ(q) is a concave function for any choice of the cutoff and the
Legendre transform is well defined. However, the application of a cutoff is necessary to have
a good linear fit of log2

∑
(g
(n)
i )q and a reliable determination of τ(q) for q < 0, see figure 4.

The need to cutoff all the scales n � nε is not surprising since at n = nε there is a sudden
change. For n < nε the weights of the sets Ikn,...,k1 are less sensitive to the fluctuations affecting
a single realization of the measure with defects. The dimensions spectrum is evaluated for any
realization of the measure with defects. We expect that the Legendre transform f (α) of the
τ(q) spectrum computed with the cutoff is capable of detecting the presence of defects.
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f(
α)

α1.8 2.3
0.1

2.1
2

No cutoff

f(
α)

α1.8 2.3
0.1

2.1
2

Cutoff

Figure 5. Spectrum of exponents for the measure (3.2) with defects inserted at scale ε = 2−6 with
probability p = 0.1 (small circles) and the same spectrum for the measure with no defects (curve).
The left-hand figure is obtained by keeping all the scales, whereas in the right-hand one the scales
smaller than ε are discarded.

f(
α)

α1.8 2.3
0.1

2.1
2

η=0

f(
α)

α1.8 2.3
0.1

2.1
2

η=0.4

f(
α)

α1.8 2.3
0.1

2.1
2

η=0.7

Figure 6. Fractal measure with defects corresponding to the maps 3.2 with weights p1 = 0.225,
p2 = 0.275, p3 = 0.265, p4 = 0.235. The defect scale and probability are ε = 2−6, p = 0.05.
From left to right the measure and the corresponding f (α) are shown for attenuation factors η = 0,
0.4, 0.7. For comparison the f (α) of the standard measure (p = 0) is shown (continuous curve).

The choice of an attenuation factor η in the range [0, 1] generates a family of probabilistic
fractal measures whose spectrum f (α) varies continuously from the lacunar η = 0 to the
standard measure η = 1. As shown by figure 6, when η increases from left to right, the width
of the spectrum decreases until the standard spectrum is recovered. This result is consistent
with a spread of the local exponents, caused by the introduction of defects. The low defect
probabilityp = 0.05, chosen in figure 6 gives an almost zero probability of getting an empty set
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f(
α)

α1 2
0

2.1

1.58

f(
α)

α1.7 2.4
0

2.1
2

f(
α)

α1.7 2.4
0

2.1
2

Figure 7. Extrapolation by cubic splines of the f (α) spectrum. Measure with fractal support
generated by the map (3.2) with weights p1 = 0.32, p2 = 0.27, p3 = 0.0, p4 = 0.41 (left
side). Measure with support [0, 1] × [0, 1] generated by the map (3.2) with weights p1 = 0.225,
p2 = 0.275, p3 = 0.265, p4 = 0.235 (centre); the same measure with lacunes appearing at scales
smaller than ε = 2−6 and probability p = 0.1 (right-hand side).

(Pempty = 6.3 × 10−6) when η = 0, whereas the expectation value of the Hausdorff dimension
of the set is E(D

H
) = 1.926. When η → 0 the reliability of the uniform partition algorithms

to compute τ(q) becomes doubtful for q < 0, because we are approaching a limit in which
the support of the measure is a fractal set. We believe that, for very low defect probabilities
p � 1, uniform partitions are still reliable for small η, but a check with the algorithms [9,10],
convergent for q < 0, should be made.

If the measure is deterministic no negative values of f (α) are allowed. Random measures
may lead to negative values of f (α). In this case f (α) can vanish, and the values of α where it
occurs correspond to values of q such that τ(q) has a tangent straight line passing through the
origin. For the measures with defects we considered having η > 0 the occurrence for some
realization of negative values of f (α) is a very rare event.

Moments. In order to evaluate in a quantitative way the effect of the size and probability
of the defects it is convenient to introduce a set of moments, which characterize the shape
of the spectrum f (α). To this end we need to interpolate the spectrum and extrapolate it to
cover the whole interval α±∞, where f (α) is defined. This can be achieved by using cubic
splines. If the generalized dimensions are computed in the interval [q−, q+], which is mapped
into [α+, α−] ⊂ [α+∞, α−∞], the cubic splines are evaluated with the additional constraint
f ′(α±) = q±. The unknown endpoints α±∞ are determined by imposing that the interpolating
function f (α) vanishes with a vertical tangent f ′(α∓∞) = ±∞. In the intervals [α+∞, α+]
and [α−, α−∞] the interpolating function has been chosen of algebraic type C+(α − α+∞)β+ ,
C−(α−∞ − α)β− respectively, where the coefficients C±, the exponents β± and the unknown
ends α±∞ are determined by imposing the continuity at α± of the function and its first two
derivatives (C2 interpolation).

An equivalent procedure consists in imposing at every interpolation point the continuity
of the function and its first derivative f ′(α) = q, which is explicitly known (C1 interpolation).
Comparable results are obtained from both methods; the results presented here refer to the
second procedure.

For an IFS measure, the extrapolation, shown by figure 7, agrees with the exact result within
the graphical resolution. A corresponding lacunar measure exhibits a significant widening of
the f (α) spectrum. The lacunarity changes the moments by about one order of magnitude, see
figure 8. For the f (α) values plotted in the central frame of figure 7 the moments with n � 4
are µ2 = 5 × 10−3, µ3 = 1.1 × 10−5, µ4 = 5.1 × 10−5. For the f (α) of the corresponding



1880 R Santoro et al

µ 2

p0 0.5
0

0.02

µ 3

p0 0.5
-0.001

0.002

µ 4

p0 0.5
0

0.002

Figure 8. Second, third and fourth moments of the f (α) spectrum as a function of the defects
probability p. The probability of having an empty set increases with p and is below 0.03 for the
quoted values (Pempty(0.2) = 0.0016, Pempty(0.4) = 0.031).

lacunar measure plotted in the right frame of figure 7: µ2 = 1.2 × 10−2, µ3 = 2.5 × 10−4,
µ4 = 3.1 × 10−4.

5. Biomedical applications

In this section we consider an application of multifractal analysis to the cancellous bone
radiographs, showing that the f (α) spectrum of local exponents can discriminate between the
normal and osteoporotic tissue, where lacunar type defects are present.

5.1. Bone structure

Bone structure consists of a cortical layer of compact bone that surrounds an inner core of
cancellous bone, composed of a network of trabeculae, mainly oriented along stress lines. In the
osteoporotic bone, resorption prevails over neodeposition, so that both cortical and cancellous
bone decrease in overall mass. However, the tendency of osteoporotic bone to fracture is
due mainly to an altered distribution of bony trabeculae in space. The thinning of trabeculae
per se is not sufficient to determine bone fragility, whilst alterations of the three-dimensional
texture of the trabecular bone appears to be related to the tendency of osteoporotic bone to
fracture. In conclusion the strength and solidity of cancellous bone does not exclusively depend
on bone mineral density (BMD) but also on trabecular architecture. BMD can be evaluated
in a quantitative way by a non-invasive technique, while this is not the case for trabecular
architecture.

5.2. Multifractal analysis of normal cancellous bone

A high-resolution post-mortem radiography of a normal vertebra of a young subject is shown in
figure 9. Analogous resolution cannot be achieved in routine diagnostic radiology. Such image
has been used as a standard of cancellous bone architecture, in order to show the properties of
the measure specified by the spectrum f (α) of local exponents shown in figure 10.

The spectrum, computed with different cutoffs on the lower scales, appears to be stable
and smooth so that a spline extrapolation to the missing part can be performed in order to
evaluate the moments, see figure 11.
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Figure 9. Image of trabecular bone (vertebra) (left-hand side). Magnified element of the same
image.
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Figure 10. Function f (α) for the image shown in the right-hand side of figure 9. The variable q
was chosen in the interval [−30, 30] and the scales used for the extrapolation of τ(q) were chosen
to be in the range [2−N , 20] where N = 8 (left-hand side), N = 7 (centre), N = 6 (right-hand
side).
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Figure 11. Splines extrapolation for the spectra shown in figure 10.

5.3. Multifractal analysis of osteoporotic cancellous bone

Osteoporosis has been considered to depend on a decrease in bone mass which affects its
strength and increases the risk of fracture. Therefore methods determining BMD have been
utilized to identify the patients at risk of fracture. However, it has been demonstrated that BMD
measurements alone may be insufficient to determine the actual solidity of the cancellous bone,
which mainly depends on trabecular architecture.

Changes in trabecular architecture of cancellous bone strictly related to osteoporotic
processes can be clearly determined by invasive methods such as histomorphometry of bone
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Figure 12. Image of normal bone (upper left) and of osteoporotic bone (upper right). Element of
normal bone (lower left) and of osteoporotic bone (lower right).
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Figure 13. Function f (α) for the image shown in the left-hand side of figure 12, corresponding
to a normal bone. The variable q was chosen in the interval [−30, 30] and the scales used for
the extrapolation of τ(q) were chosen to be in the range [2−N , 20] where N = 8 (left-hand side),
N = 7 (centre), N = 6 (right-hand side).

biopsies. In order to measure the same parameters in clinical radiographs, which represent a bi-
dimensional projection of a complex 3D structure, fractal geometry could represent a suitable
approach. Some studies have appeared describing the application of fractal dimension analyses
to radiographs of human bone [14–18]. In figure 12 we show two radiographs of a vertebra,
the left-hand side corresponding to a normal case like the one shown in figure 9, the right-hand
side to an osteoporotic bone. In figure 13 we show the f (α) spectrum of the normal bone and
in figure 14 the corresponding spectrum of the osteoporotic bone. Having examined several
other images we can conclude that spectra for the normal and osteoporotic bone exhibit a
different shape: the curve f (α) is definitely wider in the second case, in agreement with an
increase of the lacunarity of the body.
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Figure 14. Function f (α) for the image shown in right-hand side of figure 12, corresponding to
an osteoporotic bone. The variable q was chosen in the interval [−30, 30] and the scales used for
the extrapolation of τ(q) were chosen to be in the range [2−N , 20] where N = 8 (left-hand side),
N = 7 (centre), N = 6 (right-hand side).

6. Conclusions

We have examined a family of IFS measures with defects, showing that the f (α) spectrum of
local exponents widens monotonically with the attenuation factor of the measure η, reaching
a maximum when the defect is a lacuna (η = 0). The moments of the measure allow one
to determine quantitatively this dependence on η. An image may be considered as a fractal
measure specified by a given uniform partition. In this case the f (α) spectrum extracts more
information with respect to the grey tones distribution and to the box counting dimension.
We have used the f (α) spectrum of local exponents, to compare normal and osteoporotic
bone radiographs. In high-resolution radiographs the cancellous bone structure emerges very
neatly. The osteoporotic bone radiographs exhibit a widening of the f (α) spectrum similar to
the IFS measures with defects, since the decrease of the bone mass determines a rarefaction of
the cancellous bone. The algorithms based on uniform partitions are fast and allow real time
analysis of high-resolution radiographs. As a consequence the spectrum of local exponents
could be used to discriminate by radiographs the normal and osteoporotic cancellous bone, in
order to identify the patients at risk of fracture.
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